Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Regular and Supplementary Examination December 2021 (2015 Scheme)

Course Code: CS405 Course Name: Computer System Architecture

	Course Name: Computer System Architecture					
Max. M	Marks: 100 Duration: 3	3 Hours				
	PART A Answer all questions, each carries 4 marks.	Marks				
1	Explain implicit and explicit parallelism in parallel programming	(4)				
2	plain NUMA model for Multiprocessor Systems					
3	State Amdahl's law. Write an expression for overall speedup.	(4)				
4	Differentiate between crossbar network and multiport memory.	(4)				
5	Explain different message routing schemes.					
6	Explain the factors speedup, efficiency and throughput of a k-stage linear pipeline.	(4)				
7	Differentiate between Carry save adder (CSA) and Carry propagation adder(CPA).	(4)				
8	Write short notes on internal data forwarding.	(4)				
9	What are the four context switching polices for multithreaded architecture?	(4)				
10	Explain distributed caching.	(4)				
	PART B Answer any two full questions, each carries 9 marks.					
11 a)	Discuss the Bernstein's conditions to detect parallelism among a set of processes.	(4)				
b)	Determine the parallelism embedded in the following statements and draw the dependency graphs. Also analyse the statements against Bernstein's Conditions.	(5)				
	P1: $P = Q \times R$ P2: $M = G + P$ P3: $S = T + P$ P4: $P = L + M$					
	P5: $F = G \div R$					

10000CS405122101

12 a) Explain memory hierarchy.

- (3)
- b) Consider the design of a three level memory hierarchy with the following specifications for memory characteristics:

(6)

(2)

Memory Level	Access time	Capacity	Cost/Kbyte
Cache	t1 = 25 ns	S1 = 512 Kbytes	C1 = \$1.25
Main memory	t2 = 905 ns	S2 = 32 Mbytes	C2 = \$0.24
Disk array	t3 = 4 ms	S3 = 39 Gbytes	C3 = \$0.0002

Hit ratio of cache memory is h1=0.98 and a hit ratio of main memory is h2=0.9.

- (i) Calculate the effective access time.
- (ii) Calculate the total memory cost.
- 13 a) Explain Flynn's classification of computer architecture with diagrams. (5)
 - b) Explain the inclusion, coherence and locality of reference properties of memory (4) hierarchy.

PART C

Answer any two full questions, each carries 9 marks.

- 14 a) Design an 8 input omega network using 2X2 switches as building blocks. Show the switch settings for the permutation $\pi 1 = (0,6,4,7,3)(1,5)(2)$. Show the conflicts in switch settings, if any. Explain blocking and non-blocking networks in this context.
 - b) Explain the significance of multiport memory. (3)
- 15 Consider the three-stage pipelined processor specified by the following reservation table and answer the following: (S indicate the stages)

	1	2	3	4	5	6	7	8
S1	X					X		X
S2		X		X				
S3			X		X		X	

- 1. List the set of forbidden latencies and the collision vector.
 - 2. Draw the state transition diagram showing all possible initial sequences without causing a collision in the pipeline. (3)

10000CS405122101

		3. List all the simple and greedy cycles from the state diagram.	(2)				
		4. Determine the minimal average latency (MAL).	(2)				
16	a) Explain Write –invalidate Snoopy Bus Protocol using write-through cache						
	b)	Consider a 16-node hypercube network. Based on the E-cube routing					
		algorithm, show how to route a message from node (0100) to node (1101). All					
		intermediate nodes must be identified on the routing path.					
		PART D Answer any two full questions, each carries 12 marks.					
17	a)	Explain the mechanisms for instruction pipelining.	(7)				
	b)	Illustrate multiply pipeline design.	(5)				
18	a)	Explain the latency hiding techniques used in distributed shared memory	(8)				
		multicomputers.					
	b)	Distinguish between static dataflow computers and dynamic dataflow					
		computers.					
19	a)	Explain the Tomasulo's algorithm for the dynamic instruction scheduling.	(5)				
b)	b)	What are the problems of asynchrony and their solutions in massively parallel	(7)				
		processors?					