APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: CS309 Course Name: GRAPH THEORY AND COMBINATORICS

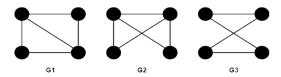
Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks. Marks

- Assume a graph G has n number of vertices (n>4) and it's complement graph (3) G' is the same. Find the minimum possible value of n. Justify your answer.
- 2 State with valid reasons whether the given graph is Euler or not. (3)

- Prove the statement, "If a graph (connected or disconnected) has exactly two vertices of odd degree, then there must be a path joining these two vertices".
- 4 Construct separate digraphs for representing symmetric, transitive and (3) equivalence relations.


PART B

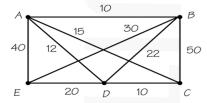
Answer any two full questions, each carries 9 marks.

- 5 a) Define complete graph. Does a complete graph contain Hamiltonian circuit? (3)

 Consider a complete graph with 7 vertices, how many edge disjoint

 Hamiltonian circuits it has?
 - b) Of the given graphs, determine which of them are isomorphic graphs? (6)

- a) Prove the theorem, 'A simple graph with n vertices and k components can have at-most (n-k)(n-k+1)/2 edges. (4)
 - b) An ordered n-tuple (d₁, d₂,...,d_n) with d₁ >= d₂>=... >= d_n is called graphic if (5) there exists a simple undirected graph with n vertices having degrees d₁, d₂, ..., d_n respectively. Which of the following is/are graphic?


I. (5,5,5,5,5,5,5,5), II.(4,4,4,3,2,2,1), III.(4,4,3,3,3,2,2,2), IV.(3,2,2,1,1,1)

7 a) State travelling salesman problem.

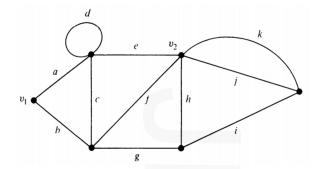
Consider a weighted graph as below. Find and draw the minimum cost travelling salesman's tour for it. Also mention the cost.

(5)

(3)

b) Define the terms: (i) Simple Graph (ii) Finite Graph (iii) Infinite Graph (iv) (4) Null Graph.

PART C

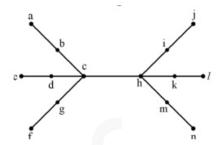

Answer all questions, each carries 3 marks.

- 8 Define the terms: (i) Vertex Connectivity (ii) Cut Vertex (iii) Separable Graph (3)
- If G is a planar graph, then any plane drawing of G divides the plane into regions, called faces. One of these faces is unbounded, and is called the infinite face. If f is any face, then the degree of f is the number of edges encountered in a walk around the boundary of the face f. If all faces have the same degree say g, then G is face-regular of degree g. Consider a graph with face regular degree of 5 and 8 vertices, then find the number of edges in the graph.
- Prove that "Every cut set in a connected graph G must contain at least one (3) branch of every spanning tree of G "
- 11 State the different metric properties of distance.

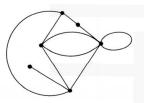
PART D

Answer any two full questions, each carries 9 marks.

12 a) Define spanning tree. Find and draw two different spanning trees from the graph given below:


b) For the given graph below, find any one spanning tree contained in it and determine the fundamental cut-sets associated with that spanning tree. Then verify the theorem "With respect to a given spanning tree T, a branch b that

06000CS309122002


determines a fundamental cut-set S is contained in every fundamental circuit associated with the chords in S".

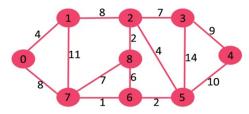
- 13 a) With proper arguments and facts prove the statement, "The edge connectivity of a graph cannot exceed the degree of the vertex with the smallest degree in G.
 - b) Find the centre, radius and diameter of the tree given below: (6)

14 a) Find the geometric dual for the given graph.

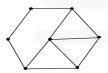
(4)

b) How many labelled trees are possible with 4 vertices? Draw eight different (5) labelled trees with 4 vertices A, B, C and D.

PART E


Answer any four full questions, each carries 10 marks.

- 15 a) With an example compare the Edge listing and Two Linear Arrays form of computer representation for graphs. (4)
 - b) With a neat flow chart explain the algorithm for determining the connectedness (6) and components for a graph.
- 16 a) State the different properties of an incidence matrix representation of a graph. (4)
 - b) Given below are the adjacency matrix representations of two graphs. Draw the graph corresponding to each matrix. (Note: Assume suitable vertex name if not given).


06000CS309122002

		v_{l}	v_2	v_3	v_4	v_5	v_6
	$v_{\mathbf{l}}$	0	1	0	0	1	1
	v_2	1	0	0	1	1	0
	v_3	0	0	0	1	0	0
	v_4	0	1	1	0	1	1
	υ ₅	1	1	0	1	0	0
(i)	v_6	1	0	0	1	0	0
(1)							

17 Apply Dijkstra's algorithm to find shortest path in the given graph starting with (10) vertex '0' as source.

18 a) Find at-least 6 circuits for the given graph and generate the corresponding (7) circuit matrix representation with the circuits obtained. (Note: Assume suitable names for the vertices and edges.)

- b) State the different properties of a path matrix representation of a graph. (3)
- 19 a Prove that the rank of an incidence matrix of a connected graph with n vertices (4) is n-1.
 - b Describe the steps invloved in the Prim's algorithm for computing the (6) minimum spanning tree of a given graph.
- 20 a) Prove the statement, "If B_f is a fundamental circuit matrix of a connected graph G with e edges and n vertices, rank of $B_f = e n + 1$."
 - b) With an example state how a cut-set matrix of a graph is generated. Also state (6) the different properties of the cut-set matrix representation.
